If it's not what You are looking for type in the equation solver your own equation and let us solve it.
1200000=t^2
We move all terms to the left:
1200000-(t^2)=0
We add all the numbers together, and all the variables
-1t^2+1200000=0
a = -1; b = 0; c = +1200000;
Δ = b2-4ac
Δ = 02-4·(-1)·1200000
Δ = 4800000
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{4800000}=\sqrt{160000*30}=\sqrt{160000}*\sqrt{30}=400\sqrt{30}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-400\sqrt{30}}{2*-1}=\frac{0-400\sqrt{30}}{-2} =-\frac{400\sqrt{30}}{-2} =-\frac{200\sqrt{30}}{-1} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+400\sqrt{30}}{2*-1}=\frac{0+400\sqrt{30}}{-2} =\frac{400\sqrt{30}}{-2} =\frac{200\sqrt{30}}{-1} $
| –8x+ 2=–30 | | -5=8x^2+14x | | 18x-3+28x-1=180 | | 8u=2u+24 | | 5/7=15/x.x= | | 7x-20+4x+16=90 | | 3+-6n=3n+6 | | 15-4x=500 | | -14=7=3x | | 14-500x=15 | | m/6+8=10 | | 10x-10=12x-6 | | 4x-15=500 | | z2+8=−78 | | 7.45x+12500=0 | | z/2+8=−78 | | 5x–3=13–3x | | k/8+8=20 | | c^2-6c+21=0 | | 15x+500=4 | | 500+15x=4 | | 4+15x=500 | | 2x^2+2x-5=x2 | | 4+500=15x | | 4+500x=15 | | 500+4x=15 | | -4.9t^2+750t+10=0 | | y*y*y=5 | | YxYxY=5 | | 1+4x=-5x+10 | | X4+4=10x2 | | 9x-28=4x-8 |